C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Engineering Mathematics - IV

Subject Code : 47	ГЕ04ЕМТ1	Branch: B.Tech (Auto/Civil/EE/EC/Mech)					
Semester : 4	Date : 15/04/2019	Time : 02:30 To 05:30	Marks : 70				

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

a) The finite Fourier cosine transform of f(x) = 2x, 0 < x < 4 is

(A)
$$\frac{32}{n^2 \pi^2} \Big[(-1)^n - 1 \Big]$$
 (B) $\frac{16}{n^2 \pi^2} \Big[(-1)^n - 1 \Big]$ (C) $\frac{32}{n^2 \pi^2} (-1)^n$
(D) none of these

() b)

The Fourier sine transform of $f(x) = \begin{cases} k, & 0 < x < a \\ 0, & x > a \end{cases}$ is

(A)
$$\sqrt{\frac{2}{\pi}} k \left(\frac{\sin a\lambda}{\lambda} \right)$$
 (B) $\sqrt{\frac{2}{\pi}} k \left(\frac{1 - \cos a\lambda}{\lambda} \right)$ (C) $\sqrt{\frac{2}{\pi}} k \left(\frac{\sin a\lambda}{a} \right)$
(D) none of these

(D) none of these

c) Under the inverse transformation $w = \frac{1}{z}$ the straight line ax + by = 0

transform into

(A) circle (B) straight line passing through origin (C) straight line (D) none of these

- d) Which one of the following is an analytic function (A) f(z) = Riz (B) f(z) = Im z (C) $f(z) = \overline{z}$ (D) $f(z) = \sin z$
- e) The unit vector tangent to the curve x = t, $y = t^2$, $z = t^3$ at the point (-1,1,-1) is

(A)
$$\frac{1}{\sqrt{14}}(i+2j+3k)$$
 (B) $\frac{1}{\sqrt{14}}(i-2j+3k)$ (C) $\frac{1}{\sqrt{3}}(i+j+k)$
(D) $\frac{1}{\sqrt{3}}(i-j+k)$

f) The value of the line integral $\int \nabla (x+y-z) \cdot d\vec{r}$ from (0,1,-1) to (1,2,0) is (A) - 1 (B) 3 (C) 0 (D) none of these

g)	E^{-1} equal to
	(A) $1-\nabla$ (B) $1+\nabla$ (C) $1+\delta$ (D) $1-\delta$
h)	hD equal to
	(A) $\log(1+\Delta)$ (B) $\log(1-\Delta)$ (C) $\log(1+E)$ (D) $\log(1-E)$
i)	The nth difference of a polynomial of degree n is
	(A) constant (B) zero (C) $n!$ (D) none of these
j)	In application of Simpson's $\frac{1}{3}$ rule, the interval of integration for closer
	approximation should be (A) odd and small (B) even and small (C) even and large (D) none of these
k)	The convergence in the Gauss – Seidel method is faster than Gauss – Jacobi method. (A) TRUE (B) FALSE
l)	The Gauss – Jordan method in which the set of equations are transformed into diagonal matrix form. (A) TRUE (B) FALSE
m)	Using modified Euler's method, the value of $y(0.1)$ for
	$\frac{dy}{dx} = x - y, y(0) = 1$ is
)	(A) 0.909 (B) 0.809 (C) 0.0809 (D) 0.0908
n)	which of the following methods is the best for solving initial value

- problems:
- (A) Taylor's series method (B) Euler's method
- (C) Runge-Kutta method of 4thorder (D) Modified Euler's method

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14) **a**) Use Stirling's formula to find y_{28} given that (5) $y_{20} = 49225, y_{25} = 48316, y_{30} = 47236, y_{35} = 45926 \text{ and } y_{40} = 44306.$ b) Construct Newton's forward interpolation polynomial to the following (5) data: 10 6 8 3 16 1 y $\begin{bmatrix} 0 & 0 < x < a \end{bmatrix}$ c) Find the Fourier sine transform of $f(x) = \begin{cases} x & a \le x \le b \\ 0 & x > b \end{cases}$ (4) Q-3 Attempt all questions (14)a) Solve the following system of equations by Gauss-Seidal method. (5) $10x_1 + x_2 + 2x_3 = 44$, $2x_1 + 10x_2 + x_3 = 51$, $x_1 + 2x_2 + 10x_3 = 61$ **b**) The population of a certain town is shown in the following table: (5)

1				0	
Year	1961	1971	1981	1991	2001
Population (in thousands)	19.96	36.65	58.81	77.21	94.61
(III thousands)					

Find the rate of growth of population in 1991.

c) Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic in some domain and find (4) a harmonic conjugate of u(x, y)

Q-4 Attempt all questionsa) Use Euler's method to find an approximate value of y at x =	= 0.1, in five (14)
a) Use Euler's method to find an approximate value of y at $x =$	= 0.1. in five (5)
du	
steps, given that $\frac{dy}{dx} = x - y^2$ and $y(0) = 1$.	
b) Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by using Simpson's 1/3 rd rule.	(5)
c) Solve the following system of equations using Gauss-elimin method:	nation (4)
$-x_1 + x_2 + 2x_3 = 2$, $3x_1 - x_2 + x_3 = 6$, $-x_1 + 3x_2 + 4x_3 = 4$	
Q-5 Attempt all questions	(14)
a) Show that the function $f(z) = \sqrt{ xy }$ is not analytic at the or	rigin, (5)
although Cauchy-Riemann equations are satisfied.	
b) Using Green's Theorem, evaluate $\iint (y - \sin x) dx + \cos x dy$	where C is (5)
the plane triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $y = 0$	$=\frac{2}{x}$.
	π (1)
Compute $f(9.2)$ by using Lagrange Interpolation formula f	trom the (4)
following data:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
O-6 Attempt all questions	(14)
a) Prove that $\vec{F} = (v^2 \cos x + z^3)i + (2v \sin x - 4)i + 3xz^2k$ is in	rrotational (5)
and find its scalar potential	
b) Find the bilinear transformation which sends the points z	$x = 0, 1, \infty$ into (5)
the points $w = -5, -1, 3$ respectively. What are the invariant	points of the
transformation?	-
c) Solve $\frac{dy}{dt} = 3 + 2xy$ where $y(0) = 1$ for $x = 0.1$ by Picard's	method. (4)
dx	
Q-7 Attempt all questions	(14)
a) Using Cauchy – Riemann equations, prove that if $f($	$z) = u + iv_{1S}$ (3)
analytic with constant modulus, then u, v are constants.	(5)
b) If $F = (2xy + z^3)i + x^2j + 3xz^3k$, show that $\int_{-\infty}^{\infty} F \cdot dr$ is indep	bendent of the (5)
nath of integration. Hence evaluate the integral when C	is any path
joining $A(1, -2, 1)$ to $B(3, 1, 4)$.	, is unj puti
c) The function $f(x)$ is given as follows:	(4)
	0.9 1.0
y 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6	2.8 3.0

x	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
y	1	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0

Compute the integral of f(x) between x = 0 and x = 1.0 using Trapezoidal rule.

Attempt all questions

Q-8

- a) Using Taylor's series method, compute y(-0.1), y(0.1), y(0.2) correct (5) to four decimal places, given that $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1
- **b**) Find the Fourier cosine and sine integral of $f(x) = e^{-kx} (x > 0, k > 0)$. (5)
- c) Find the angle between the tangents to the curve $x = t^2$, y = 2t, $z = -t^3$ at (4) the points t = 1 and t = -1.

(14)